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STRESSES IN A CONICAL TUBE UNDER SUDDEN LOADING

UDC 539.3M. A. Zadoyan

The paper considers a thick-walled long conical tube from an ideal plastic material whose inner surface
is suddenly subjected to time-constant, uniformly distributed pressure or is given a velocity. An ideal-
plastic zone propagates from the inner conical surface. It is assumed that the material of the tube
is incompressible in both the elastic and plastic zones. The plastic material obeys the Houber–Mises
plasticity condition.

Rakhmatulin and Dem’yanov [1] and Agababyan [2] considered the elastoplastic problem for a cylindrical
tube. Ivlev [3] treated the static problem of the limiting state of a conical tube, and Sokolovskii [4] studied the
elastoplastic state of the tube.

1. Motion of a Tube under Suddenly Applied Internal Pressure. We consider the limiting state
of a cylindrical tube from an ideally plastic incompressible material which is suddenly subjected to time-constant
internal pressure. The corresponding elastoplastic problem reduces to the differential equation [2]

Cx′′ + lnx− x/δ − p/k + 1 = 0, (1)

where C = a2ρ ln δ/(2G), δ = b/a, x = r2
∗(t)/a

2, r = r∗(t) is the equation of the cylindrical interface between the
elastic and plastic zones, and a and b are the radii of the inner and outer cylindrical surfaces, respectively. The
initial conditions are written as

x(t0) = 1, x′(t0) =
√

2/(Ck)
√
p− p0, p0 = (k/2)(1− a2/b2).

Here p0 is the minimum value of p for which plastic strains occur on the surface r = a and t0 is the moment the
plastic strains start to propagate.

Introducing the new function x′ = Φ(x), we reduce Eq. (1) to the first-order differential equation

C(x′2(t)− x′2(t0)) + 2x lnx− (x− 1)(2p/k + (x+ 1)/δ2) = 0. (2)

We determine the limiting pressure p = p∗ at which the tube becomes entirely plastic at t = t∗. Setting
x′(t∗) = 0 and x(t∗) = δ2 in (2), we obtain

p∗ = 2k ln (b/a)− (k/2)(1− a2/b2). (3)

Here the first term is the limiting plastic pressure and the second term is half the elastic pressure in the static
problem [5].

Let pressure p(t) = const be applied on the inner surface θ = α of the thick-walled tube at the moment
t = 0 (see Fig. 1). The condition of axial symmetry implies that w = 0. In solving a similar elastoplastic problem,
Sokolovskii [4] assumed that u = τrθ = 0. In [1, 2], these components are absent in a similar dynamic problem for
a cylindrical tube. Apparently, this assumption is valid only for a slightly conical tube. As a result, the equation
of motion becomes

1
r

∂σθ
∂θ

+
σθ − σϕ

r
cot θ = ρ

∂2v

∂t2
, σr =

σθ + σϕ
2

.

The strain components are related to displacements by the formulas εθ = (1/r)(∂v/∂θ) and εϕ = (v/r) cot θ.
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Fig. 1

The incompressibility condition εθ + εϕ = 0 implies that v = ψ(r, t)/ sin θ, where ψ(r, t) is an arbitrary
function of r and t.

1.1. Linearly Elastic State. When the applied pressure p is low, the tube is in the purely elastic state. Using
Hooke’s law, we obtain

σϕ − σθ =
4G
r

cos θ
sin2 θ

ψ(r, t). (4)

Substitution of Eq. (4) into the equation of motion yields

∂σθ
∂θ

=
4G
r

cos θ
sin2 θ

ψ(r, t) +
ρr

sin θ
∂2ψ

∂t2
.

Integrating this equation and using the boundary condition on the outer conical surface (σθ = 0 for θ = β),
we obtain

σθ =
2G
r
ψ(r, t)

( cosβ
sin2 β

− cos θ
sin2 θ

+ ln
tan (β/2)
tan (θ/2)

)
− ρr ∂

2ψ

∂t2
ln

tan (β/2)
tan (θ/2)

. (5)

Using (5), with allowance for the boundary condition at the inner surface (σθ = −p for θ = α), we find that

r
∂2ψ

∂t2
+
ω2

r
ψ(r, t) = Q. (6)

Here
ω2 = 2Gω2

0(α)/(ρg(α)), Q = p/(ρg(α)), (7)

and ω2
0(θ) = cos θ/sin2 θ − cosβ/sin2 β − g(θ), where g(θ) = ln (tan (β/2)/ tan (θ/2)).

Introducing the new function ψ(r, t) = rF (ξ), where ξ = t/r and 0 6 ξ <∞, we express the shear strain as
2γrθ = ∂v/∂r − v/r = −ξF ′(ξ)/ sin θ. For ξ = ξ1, the condition that the shear stress vanishes

F ′(ξ1) = 0 (8)

allows one to obtain an exact solution of the problem in the indicated neighborhood of the value of ξ1. If τrθ 6= 0,
the solution for the values of ξ different from ξ1 can be considered approximate. From (6), we have the equation

F ′′ + ω2F = Q, (9)

whose solution satisfying the homogeneous initial conditions F (0) = F ′(0) = 0 has the form

F (ξ) = Q(1− cosωξ)/ω2. (10)
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The stress components are calculated from the formula

σθ = −2Gω2
0(θ)F (ξ)− ρg(θ)F ′′(ξ). (11)

From (4) and (9)–(11), we obtain

σθ,ϕ = −p g(θ)
g(α)

+ p
[ g(θ)
g(α)

∓ 1
ω2

0(α)

( cos θ
sin2 θ

∓ cosβ
sin2 β

∓ ln
tan (β/2)
tan (θ/2)

)]
(1− cosωξ). (12)

In (12), the upper sign (minus) corresponds to σθ and the lower sign (plus) to σϕ.
Displacements (2) are calculated from the formula

v = pr(1− cosωξ)/(2Gω2
0(α) sin θ). (13)

Thus, under the action of suddenly applied, time-constant, internal pressure p, the conical tube performs
oscillations in the neighborhood of the state of static equilibrium with frequency ω/r variable along the tube.

We assume that at the moment t = t0, plastic strains occur at the inner surface of the shell. It follows from
(10) and (12) that

sin2(ωξ0/2) = (k/(2p))(sin2 α/cosα)ω2
0(α). (14)

Hence, for the limiting case of elastic motion, where plastic strains occur on the inner surface θ = α, we have
ξ0 = π/ω. From (14), we obtain

p0 =
k

2

(
1− sin2 α

sin2 β

cosβ
cosα

− sin2 α

cosα
ln

tan (β/2)
tan (α/2)

)
. (15)

We note that p0 is equal to half the internal pressure in the static problem [4].
Setting p = p0 in (14), we have

t0 = πr
√
ρg(α)/(2G)/ω0(α).

By virtue of (15), we obtain τrθ = 0 for ξ = ξ0.
Expressions for the stresses σx, σϕ, and σz and the radial displacement v in a cylindrical tube are obtained

by passing to the limit θ → 0, r →∞ in (11)–(13) and (15) with rθ = const:

σx,ϕ = −p ln (b/x)
ln (b/a)

+ p
( ln (b/x)

ln (b/a)
∓ b2 − x2

b2 − a2

a2

x2

)
(1− cos γt), (16)

u =
pa2b2

2G(b2 − a2)x
(1− cos γt), p0 =

k

2

(
1− a2

b2

)
.

Here the upper sign corresponds to σx and the lower sign to σϕ; γ2 = 2G(b2 − a2)/(ρa2b2 ln (b/a)).
Expressions (16) coincide with the formulas obtained in [2] for a cylindrical tube. In this case, the value

of p0 is equal to half the internal pressure in the static problem [5].
1.2. Elastoplastic State. For t > t0, a plastic zone propagates in the conical tube. Bearing in mind that the

displacement function satisfies the incompressibility condition and the continuity condition for displacements at the
interface between the elastic and plastic zones, we write the displacement function for both zones in the form

v = ψ(r, t)/ sin θ.

The condition

σϕ − σθ = 2k, α 6 θ 6 θ∗(r, t) (17)

is satisfied in the plastic zone, whereas the condition

(2G/r)(cos θ∗/sin2 θ∗)ψ(r, t) = k (18)

holds at the interface between the elastic and plastic zones. Here ψ(r, t) is a new unknown function of r and t and
θ = θ∗(r, t) is the interface between the plastic and elastic zones.

Introducing the function F (ξ) = ψ(r, t)/r, from (18) we obtain

cos θ∗ =
√

1 + µ2F 2 − µF, µ = G/k. (19)
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Similarly to (5), for the elastic zone, we have

σθ = −2Gω2
0(θ)F (ξ)− ρg(θ)F ′′(ξ) (θ∗ 6 θ 6 β) (20)

and for the plastic zone,

∂σθ
∂θ

= 2k cot θ + ρ
r

sin θ
∂2ψ

∂t2
.

Integrating this equation and using the boundary condition at the inner surface, we obtain

σθ = −p+ 2k ln
sin θ
sinα

+ ρ ln
tan (θ/2)
tan (α/2)

F ′′(ξ). (21)

Satisfying the continuity condition for stresses σθ on the surface θ = θ∗(ξ), we arrive at the equation

F ′′ + νΩ(F ) = νp/(2k), ν = 2k/(ρg(α)), (22)

where

Ω(F ) = ln
sin θ∗(F )

sinα
+ µF

( cos θ∗(F )
sin2 θ∗(F )

− cosβ
sin2 β

− ln
tan (β/2)

tan (θ∗(F )/2)

)
.

With allowance for (19), we obtain

Ω(F ) = 1/2− µF cosβ/ sin2 β + ln (
√

2µF (
√

1 + µ2F 2 − µF )1/2/ sinα)

− µF ln (tan (β/2)(1− µF +
√

1 + µ2F 2)(
√

1 + µ2F 2 + µF )1/2/(2µF )1/2). (23)

Introducing the function φ,
dF

dξ
= φ(F ), (24)

we reduce (22) to the first-order equation

φ′φ+ νΩ(F ) = νp/(2k). (25)

From this equation, we obtain

φ2(F ) = φ2(F0) + 2ν

F∫
F0

( p
2k
− Ω(x)

)
dx, (26)

where F0 is the value of the function F at the moment of occurrence of plastic strains.
Relation (24) yields

t− t0
r

=

F∫
F0

[
φ2(F0) + 2ν

x∫
F0

( p
2k
− Ω(x)

)
dx

]−1/2

dx. (27)

The parameter φ2(F0) is determined from formula (10), which implies that F (ξ0) = (1/(2µ)) sin2 α/ cosα:

φ2(F0) = F ′2(ξ0) = 2F0(p− p0)/(ρg(α)). (28)

The quadrature (27) yields the relation between F and ξ − ξ0 for p > p0.
Eliminating F ′′(ξ) from (20) and (21) and using (22), for the plastic zone, we obtain

σθ = −p+ 2k ln
sin θ
sinα

+
1

g(α)
ln

tan (θ/2)
tan (α/2)

(p− 2kΩ(F )),
(29)

σϕ = σθ + 2k, α 6 θ 6 θ∗

and for the elastic zone,

σθ = −2Gω0(θ)F (ξ)− (g(θ)/g(α))(p− 2kΩ(F )), (30)

σϕ = σθ + 4G(cos θ/sin2 θ)F (ξ), θ∗ 6 θ 6 β.

1.3. Limiting Plastic State. We determine the minimum value of the pressure p∗ and the corresponding
value of t∗ for which the elastic zone disappears, i.e., a purely plastic state occurs.
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Setting F ′(ξ∗) = φ(F∗) = 0, where ξ∗ = t∗/r, in (26), we obtain

p∗ =
k

F∗

(
µF 2

0 ω
2
0(α) + 2

F∗∫
F0

Ω(x) dx

)
, F∗ = F (ξ∗) =

1
2µ

sin2 β

cosβ
,

i.e.,

p∗ =
k

2
cosβ
sin2 β

{[
1− sin2 α

cosα

( cosβ
sin2 β

+ ln
tan (β/2)
tan (α/2)

)] sin2 α

cosα
+ 8µ

F∗∫
F0

Ω(x) dx

}
. (31)

In the corresponding static problem for a conical tube, the limiting pressure is defined by the formula
ps∗ = 2k ln (sinβ/ sinα), which was first obtained by Ivlev [3] and then by Sokolovskii [4] as the limiting case
of the elastoplastic problem.

Passing to the limit θ → 0, r → ∞ with fixed y = rθ and assuming that 2µF∗ = β2 and 2µF0 = α2,
from Eq. (23) we obtain Ω(F ) = 1/2−µF/δ2−lnα+ln

√
2µF . Evaluating the integral in (31) and letting αr → a and

βr → b, we arrive at the expression for the limiting pressure in a cylindrical tube p∗ = 2k ln (b/a)−(k/2)(1−a2/b2),
which coincides with formula (3).

If p > p∗, purely plastic expansion of a conical shell occurs.
2. Motion of the Tube with Its Inner Surface Subjected to Velocity. Let us consider the case

where the pressure is absent (p = 0) and at the moment t = 0, the inner surface of the tube is given the velocity

v
∣∣∣
t=0

= 0,
∂v

∂t

∣∣∣
t=0

= J for θ = α.

Here J is a specified constant. Then,

ψ(r, 0) = 0,
∂ψ

∂t

∣∣∣
t=0

= I, I = J sinα.

2.1. Linear-Elastic State. For t > 0, we introduce a function F (ξ) of the form ψ(r, t) = rF (ξ), where ξ = t/r

and 0 6 ξ <∞. In this case, the initial conditions take the form F (0) = 0 and F ′(0) = I.
For p = 0, the differential equation (6) becomes

r
∂2ψ

∂t2
+
ω2

r
ψ(r, t) = 0

or F ′′(ξ) + ω2F (ξ) = 0. Solving this equation with allowance for the initial conditions, we obtain

F (ξ) = (I/ω) sinωξ. (32)

For a relatively low velocity, the state of the tube is elastic.
Let plastic strain occur on the inner surface of the tube at the moment t = t0. We denote the corresponding

minimum value of I by I0. In this case, we have

F0 = F (ξ0) = sin2 α/(2µ cosα), (33)

and, hence,

sinωξ0 = ω sin2 α/(2µI cosα).

Assuming that sinωξ0 = 1, we obtain

I0 =
kω0(α)√
2Gρg(α)

sin2 α

cosα
, t0 =

πr

2

√
ρg(α)

2G
1

ω0(α)
.

For these values of I0 and t0, we have F ′(ξ∗) = 0 and τrθ = 0.
2.2. Elastoplastic State. If the applied velocity J is higher than I0/sinα (for I > I0), the plastic zone

propagates. The stress components are determined from (29) and (30) by setting p = 0: for the plastic zone,

σθ = 2k ln
sin θ
sinα

− 2k
g(α)

ln
tan (θ/2)
tan (α/2)

Ω(F ) (α 6 θ 6 θ∗) (34)

and for the elastic zone,

σθ = −2Gω0(θ)F (ξ) + 2k(g(θ)/g(α))Ω(F ) (θ∗ 6 θ 6 β). (35)
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The expression for σϕ is the same as in Sec. 1.
The function F (ξ) is determined from the differential equation F ′′+ νΩ(F ) = 0 (which follows from (22) for

p = 0) and the initial conditions (28) and (33).
Setting p = 0 in (25), we obtain

φ2(F ) = φ2(F0)− 2ν

F∫
F0

Ω(x) dx. (36)

Hence,

t− t0
r

=

F∫
F0

(
φ2(F0)− 2ν

x∫
F0

Ω(x) dx

)−1/2

dx.

Let us determine the minimum value of the pulse intensity I∗ for which the tube becomes entirely plastic.
Setting F ′(ξ∗) = 0, from (36) we obtain

φ2(F0) =
4k

ρg(α)

F∗∫
F0

Ω(x) dx, F∗ =
1

2µ
sin2 β

cosβ
. (37)

It follows from (32) that

F ′(ξ0) = I∗ cosωξ0. (38)

Substituting ξ = ξ0 into (32) and eliminating ξ0 from the resulting equation and relation (38), we obtain
I∗ =

√
F ′20 + ω2F 2

0 . Substitution of F0 from (33) and F ′0 from (38) into the last formula yields the limiting value
of I:

I∗ =
k√

2Gρg(α)

(
sin4 α

cos2 α
ω2

0(α) + 8µ

F∗∫
F0

Ω(x) dx

)1/2

.

We note that I∗ is the exact limiting value of I for which F ′(ξ∗) = 0, i.e., τrθ = 0.
2.3. Inertial Expansion. For I > I∗, inertial expansion of the tube occurs. Setting p = 0 in (21) and

satisfying the boundary condition at the outer surface σθ = 0 for θ = β, we find the law of plastic expansion:

F ′′(ξ) = −2k ln (sinβ/ sinα)/(ρg(α)). (39)

Substituting (39) into (21), for p = 0 we obtain

σθ
2k

= ln
sin θ
sinα

− 1
g(α)

ln
sinβ
sinα

ln
tan (θ/2)
tan (α/2)

, σϕ = σθ + 2k.

2.4. Unloading. At the moment t = t∗∗, let the expansion rate be equal to zero and plastic deformation be
converted to elastic unloading. Then,

F ′(ξ∗∗) = 0, ξ∗∗ = t∗∗/r. (40)

Integration of (39) using (40), yields

F (ξ) = F∗∗ −
k

ρ

ln (sinβ/ sinα)
g(α)

(ξ − ξ∗∗)2.

Here F∗∗ is the value of F for t = t∗∗.
The elastic unloading follows the law

σθ − σϕ − (σ∗∗θ − σ∗∗ϕ ) = 2G[εθ − εϕ − (ε∗∗θ − ε∗∗ϕ )], (41)

where two asterisks denote the stresses and strains at the end of plastic expansion. Thus, at the beginning of
unloading, we have

σ∗∗θ − σ∗∗ϕ = −2k, ε∗∗θ − ε∗∗ϕ = −2F∗∗ cos θ/ sin2 θ.
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Introducing the function ψ(r, t) = rF (ξ), we obtain

εθ − εϕ = −2F (ξ) cos θ/ sin2 θ for t > t∗∗.

From (41), it follows that

σϕ − σθ = 2k + 4G(F (ξ)− F∗∗) cos θ/ sin2 θ. (42)

Integrating the equation of motion and using the condition on the surface θ = α, we find that

σθ = 2k ln
sin θ
sinα

+ 2G
( cosα

sin2 α
− cos θ

sin2 θ
− ln

tan (θ/2)
tan (α/2)

)
(F (ξ)− F∗∗) + ρ ln

tan (θ/2)
tan (α/2)

F ′′(ξ). (43)

The boundary condition on the outer surface σθ = 0 for θ = β yields the following equation of motion during
unloading:

F ′′(ξ) + ω2(F (ξ)− F∗∗) + 2k ln (sinβ/sinα)/(ρg(α)) = 0.

Hence,

F (ξ) = F∗∗ − 2k ln (sinβ/ sinα)(1− cosω(ξ − ξ∗∗))/(ρg(α)ω2). (44)

Substitution of (44) into (42) and (43) yields

σϕ
2k

=
σθ
2k

+ 1− 2
ω2

0(α)
cos θ
sin2 θ

ln
sinβ
sinα

(
1− cos

ω

r
(t− t∗∗)

)
, (45)

σθ
2k

= ln
sin θ
sinα

− 1
g(α)

ln
sinβ
sinα

ln
tan (θ/2)
tan (α/2)

+
1

ω2
0(α)

ln
sinβ
sinα

[(
1 +

ω2
0(α)
g(α)

)
ln

tan (θ/2)
tan (α/2)

− cosα
sin2 α

+
cos θ
sin2 θ

](
1− cos

ω

r
(t− t∗∗)

)
. (46)

Thus, during unloading for t > t∗∗, the tube performs harmonic oscillations with variable frequency ω/r in
the presence of residual stress and strain. The unloading stage is completed at the moment t = t∗∗∗ when reverse
plastic strain can occur, for which the following condition holds:

σθ − σϕ = 2k. (47)

Combining (47), (42), and (44), we obtain the unloading time

(t∗∗∗ − t∗∗)/r = (2/ω) arcsin (ω0 sinα/
√

2 cosα ln (sinβ/ sinα) ).

The stresses σθ and σϕ during unloading are determined from formulas (45) and (46). The occurrence of
secondary plasticity in a conical tube with specified mechanical parameters can be revealed by numerical analysis.
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